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INTEGRAL CHARACTERISTICS OF SOLUTIONS OF 

DYNAMICAL ~NPRESS~ON OF SOLID BODIES 

SPATIAL PROBLEMS ON THE 

IN CONTINUOUS MEDIA* 

F.M. BORODICH 

Spatial problems of the impression of arbitrary bodies into a half-space 
occupied by a continuous medium are examined in a geometrically linear 
formulation. It is shown that if the governing relationships are 
linear, while the medium is homogeneous inhomogeneous only in depth, 
then in the initial interaction stage the problem of determining the 
integral characteristics of the solutions (the integral displacements 
and resultant forces) is equivalent to the problem of plane-wave 
propagation in this same medium. Expressions are obtained for the 
interaction forces between the body and the medium (resultant forces) in 
a number of specific cases: a non-linear elastic medium with initial 
stresses, viscoelastic media, and an isotropic elastic medium, smoothly 
inhomogeneous in depth. It is shown that all the results hold for both 
vertical impression and for impression with rotation. 

Expressions for the resultant forces have been obtained earlier by 
other methods in the following problems: vertical impression for an 
acoustic medium /l/ and an isotropic elastic medium 12, 3/, impression 
with rotation for an isotropic elastic medium /4,! and vertical 
impression in an anisotropic elastic medium 151. 

1. Pormntation of the prob‘lem. We consider a continuous medium in which the connection 
between the stress tensors o and the small strains e is given in the form 

o = P (E), 8ij = (Ui, j + Uj,i)/2 W) 

where F is some operator, and ni is the displacement vector component. We will assume that 
the velocity of perturbation propagation in this medium is finite while the medium itself 
occupies the positive half-space Res. 

Let a smooth blunt body, whose shape is determined by 
the graph of a non-negative function f(x,,x,) be impressed 
in a half-space R+*initially at rest. We select the origin 
of a Cartesian system ofcoordinates at the point of initial 
body contact with the medium. We direct the xa axis into 
the depth of the half-space, and the 2% and xa axes along 
its boundary. We first examine the vertical impression with 
a positive velocity F(t) (Fig.1). Then the depth of 
impression of the body apex H is found from the formula 

H(t) = i V(h) dh 
0 

w4 

Fig.1 

We take a section of the body surface at a height H(t) and project it on to the za = 0 
plane. The velocity of propagation of the boundary of this projection at the point z,,r2 
equals V (t) 1 grad f (rl, r2)/Y. On the blunt body fgradf (0,O)l = 0. Hence, a time interval 
exists for any finite velocity of perturbation propagation in the medium at which the 
propagation velocity of the boundary of the projection of the body section exceeds the maximum 
velocity of perturbation propagation in the medium a. 

Let G be a domain of body contact with the medium, 3G its boundary, and ~(xr*,x%*, t),(xr*, 
%*) e z the velocity of motion aG. We will consider the problem of the time interval 
[O, 2% on which the following equality holds 

Y (x,, I,, 1) = F @)I grad f @r, rJ-* (1.3) 

If the initial velocity V(0) is not zero, then the quantity T is non-zero. It is 
said that the impression process in the interval ['A Tl is superseismic in nature. The 
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equality (1.3) is known to be satisfied if the velocity y(rr,a& t) is greater than the quantity 
a (and can still be satisfied a certain time because the velocity of perturbation propagation 
in the direction in the horizontal plane and orthogonal to the body surface can be less than 
the maximum value). 

Emmple. Let a paraboloid of revolution be impressed into a medium with constant 
velocity V,, i.e., 

Then from the condition 

we obtain the following 
It is obvious that 

f (21, Zl) = A+, r = fzp + 58s ( A>(‘, v (t) 3 8, 

T > fl, Y h*. %*, h) = Q 

estimate T > V,I(4a2A). 
for t E IO, Tl at the points aG(t) the COmpOnent uI Of the dis- 

placement vector will experience a break, i.e., ug is not smooth. Consequently, we will 
consider a weak solution of the problem. 

We consider u and u to satisfy the conditions 

(1.4) 

VCP E co1 (R+S~[O, T]), u E W,’ (R+$x [0, T]) 

Here and henceforth, the comma before the subscript will denote the derivative with 
respect to the corresponding coordinate; 8, and a' are generalized derivatives (in the 
Sobolev sense) with respect to the coordinates and time, respectively; summation from 1 to 3 
is assumed over repeated Latin subscripts, while there is no summation over the Greek sub- 
scripts; W,' is the Sobolev space, GO' is a set of continuously differentiable functions 
that vanish on the boundary of the domain of definition and have compact support, P is the 
density of the medium, and x,is the component of the volume force field. 

We will formulate an initial-boundary value problem on dynamic impression. We will seek 
u and (I connected by the conditions (1.1) (in which the derivatives are replaced by the 
generalized derivatives) and satisfying conditions (1.4). We consider the function u to be 
continuous and to satisfy the generalized initial and boundary conditions 

~a-~cp,,j~aj 
T 

+ ~Ja)dvdt + a\,P (x)c~a (x,O)~~"(x)dv + 

~,T,dslds2dt = 0, a = 1,2,3 

u (x9 0) = u" (x), n3 (51, rzr 0, t) = g k? z21 t), (% 22) E G (t) 

Here u" and v" are the initial displacements and velocities of points of the medium, 
respectively, T, and .T, are tangential forces given on the whole boundary plane, Ts and 
normal forces given outside the contact domain, g is a function known in the domain G (t), 
and the integral identity is satisfied for any functions q such that 

cp E C’ tR+3 x LO, T1)v cp (x, T) = 0, (~3 hr ~1 0, t) = 0, h 4 E 
G (t), 0 < ‘t < T 

In the problem under consideration 
G (t) 

u" E v" EZ T, E T, z 0, T, (x1, x2, t) = 0, (21, G) E Re ‘\ 
and the function g(rr, 52, t) is known on the whole boundary plane of the half-space 

in the superseismic stage. Consequently, the initial and boundary 
in the following form 

conditions can be written 

(1.5) 

The integral identity is satisfied for all functions 'p such 

'PEG1(R+' x ['X T]), cp(x, T) = 0, '~3 E Co1(R+3), 0 <t< T 

We will consider that the conditions of the uniqueness theorem are satisfied for the 
medium under consideration (uniqueness theorems for weak solutions for acoustic, elastic, 
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and viscoelastic media are considered in a number of publications /b-8/). 

2. The integm% dumucteristies of soh%ms of dynamic problems. we introduce the 
following integral characteristics 

where integration in the "1% plane is performed everywhere in the domain R'. 
Let u and e satisfy conditions (1.4) and let the support of these functions be-limited 

for O,< t< T. Then the following assertion holds (see /9/f. 

Lennna. The integral characteristics introduced in (2.1) possess the following properties: 
1) w, gi, g4 are determined almost everywhere in R, x IO, Tl and are summable; 
2) g8 and rr4 are generalized derivatives of the function w (%, t) with respect to xS 

and t, respectively; 
3) g, and ga equal zero for almost all sa and t; 
4) w fx,, t) E w,l (R, x lo, Tl); 
5t Pa and g4 are functions from L, (R, x lo, Tf). 
Let u and o be a weak solution of problem (1.11, (1.41 and (1.5). Then by virtue of 

the finiteness of the velocity of perturbation propagation in the medium and the boundedness 
of the supports of the functions u and o at the initial time the supports of the functions 
u and e are bounded for any finite t. Thus, the conditions of the lemma are satisfied. 

Let X and p be independent of xi and x2. 

Assertion 1. The vector w and the tensor x,, introduced in (2.1) satisfy the following 
initial-boundary value problem 

w E R',l(R+ x IO. Ti); w E C (R, x to, 2'1) WI 

w (53, 0) = 0; UJQ (0, t) = Y (t), y ($1 = 5s g (Xl. .ca, t&j, a$ 

(~~a'~~~,-~~,& f &&)&dt = 0 

The last identity is satisfied for any functions g such that 

Proof. We take u and o, the solution of problem (l.l), (1.4) and (1.5) and construct 
integral characteristics for it. Applying the lemma we see the validity of the assertion. 

We note that in the general case if the operator F in (1.1) is non-linear, then it is 
impossible to set up a connection between the components of the tensor X, and the vector 
w; if the operator F is linear, then the components of Zij are defined uniquely with respect 
to w. 

Theorem. If the continuous medium is homogeneous in the coordinates Xl? 22 and the 
relationships (1.1) are linear, and also if the functions X and p are independent of the 
coordinates 5, and % then the problem of finding the integral characteristics of the 
solution of the dynamical problem (1.1). (1.41 and 11.5) on the impression of a blunt body in 
a half-space R+8 filled by this medium is equivalent to the initial-boundary value problem 
(2.2) concerning plane-wave propagation in this medium. 

Proof. We take the solution of the problem under consideration and by using (2.1) we 
introduce the vector u and tensor u and by direct substitution we see that the theorem is 
valid. 

Remark. Let v be a vector of the external normal to the surface zQ = 0. Then an 
integral force vector N: IV, = CrjVj can be introduced, and the interaction force between the 
body and medium will equal 

P = -(N (0, t), v) s --x3, (0. t) (2.3) 

We consider below the case of impression in specific media for X,= 0. 

3. A medium with initid stresses. Let a non-linearly elastic medium be prestressed by 
homogeneous forces at infinity. We consider the stresses caused by body contact with the 
medium to be small compared with the initial stress. If Cartesian coordinates 9, 2% 31 of 
the initial deformed state are introduced /lo/, then the equations of motion and the linear- 
ized governing relationships will have the form 
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Qij. i - PUT = 0, QSJ = @tjkluk.i (3.1) 
where Q+l are components of the non-symmetric "true" stress tensor while @iJkZ are COZLI- 

ponents of the constant (by virtue of homogeneity) fourth-rank tensor. The components %Jkl 

possess the following symmetry properties /lo/ 

(Jhjkl = aZkji (3.2) 

We introduce the matrix Ai,= %&P symmetric because of (3.21. It follows from the 
Hadamard theorem .!lOj that the positive eigennunbers Ci" correspond to the eigenvectors ei 
of this matrix. 

Assert ?:on 2. The generalized solution w and N of problem (2.21 and (3.11 is determined 
by the formulas 

w (.~a, t) = aiciT1qY (t - s,/ci)ei, q E c,/cQ (3.3) 

N (G t) = -pUjqY’ (1 - X,/C&i 

where ai coefficients in the expansion of the vector v in the basis e, and the prime 
denotes the derivative. 

The proof is completely analogous to the proof of the corresponding assertion for an 
anisotropic linearly elastic medium 15, 9/. 

Corollary. The force of body interaction with the medium is determined from the 
formula 

P = -ppv (QS (t) (3.4) 

where s(t) is the area of the domain G(t). 
Indeed, the function Y(t) in the problem of the vertical impression is the volume of 

the body under a cut at the height ~(8). Then taking account of (1.2) we obtain 

Y' (1) = Y (t) s (t) (3.5) 
We obtain (3.4) from (2.3), (3.3) and (3.5). 
We note that dynamical contact problems for bodies with initial stresses were still 

examined only in the plane case 1111. 
If the problem of the vertical impact of a body of mass in on a half-space surface with 

initial stresses is considered, the body velocity after the collision is determined exactly 
as in the problem of collision with an acoustic medium 1121. In particular, if the body is 
an elliptical paraboloid, i.e., f(zl,z2) = AslZ +Bz,~, B > A > 0, then the body velocity after 
the collision is determined from the formula 

(3.6) 

where V, is the body initial velocity. This formula (3.6) is exact as long as (1.3) is 
satisfied. 

4. Impression into a viscoetastic medium. Let the medium occupying the half-space R+* 
be linearly viscoelastic. We will write the expressions for the integral characteristics of 
the solution in this case. 

Here and henceforth we shall seek a generalized solution among piecewise-smooth functions 
1131. It can be shown that the generalized piecewise-smooth solution of dynamic problems 
are among the weak solutions. 

MaxweZZ medium. The governing relationships for this medium have the form 

t 

where Kand u are the volume and shear elastic moduli, respectively, while t, and t, are 
the volume and shear relaxation times, respectively. Substituting these expressions into 
(2.1) and the equation of motion, we obtain equations for w, and w, 

wi- + Wi’& - (p/p) wi,,s = 0, i = 1, 2 

whose solution taking boundary conditions into account and by virtue of uniqueness is 
t) = w, (Is, t) = 0. 

w1 (% 
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In the case t, = t, the integral displacement wQ satisfies the equation 

WQ" + w,‘lt, - c,a = 0, c,a eE (4kl3 + K)lp 

whose solution taking the boundary conditions into account has the form /14/ 

where h and I, are the Heaviside and Bessel functions, respectively, while z is the time 
during which the perturbation arrives at the point with coordinate x8. 

Hence, and from (4.1) we obtain the expression 

dw, (0, q/&r, = co-% (t) r--y’ (t)- Y (q/(2&) + Q @)I 

P (t) = --pco IY’ (t) + Y (t)/(zt,) - Q (t)l 

Voigt medium. In this case the relaxation between the stresses and strains can be 
written in the form 

Uij = 2pEij f Qtik (K - 2~13) + 2pt.q; + (Kt, - 2ptJ3) ~tik.61~ (4.2) 

where t** and 1, are the lag times under shear and bulk compression, respectively. The 
equation of plane wave propagation in this medium has the form 

(K + 4y/3) wQ>3s + YW;,~~ - pws" = 0, Y = Kt, + 4ytJ3 

and its solution taking the initial and boundary conditions (2.2) into account is written 
as follows /15/ 

The expression for the contact interaction force,taking (2.2) and (4.2) into account, 
has the form 

p (t) = --P Wwa.3 (0, t) + VW,,, (0, typ1 

A homogeneous linear heriditary-elastic mediwn. We will assume that the orthotropy axes 
coincide with the coordinate axes. 

The type of boundary conditions in the dynamical problem (2.2) does not change throughout 
the whole extent of the process; consequently, the Volterra correspondence principle /lb/ 
holds for the problem under consideration. Starting from this principle, we take the ex- 
pression for the force of body interaction with the orthotropic elastic medium /9/ and 
replace the function of the elastic constants (the wave velocity a is along the bg axis) by 
an appropriate operator ((a+A*) where A* is the Volterra operator with kernel A (t)). Then 
we obtain for the contact interaction force 

P(t)=-p[aY'(t)+Y(t)A(O)+jY(t-A)A'(h)dX] 
0 

The governing relationships for the medium under consideration can be written in the 
form /lb/ 

Uij = [EijklEkl (Xv t) - [r;jhi (t - L) &kl (X9 h) dll 

” 
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where Eiikl is the instantaneous elastic moduli tensor and rtjxr is the kernel of the 
Volterra operator. Then a = 1/E,,,& for an orthotropic medium. 

The reasoning presented above repeats the reasoning used earlier when investigating 
wave propagation in isotropic viscoelastic rods f171. 

5. Isotropic elastic meclitua inhomogeneous through the depth. The governing relations 
forthis medium have the form 

If integral characteristics of solutions of the problem about impression in the medium 
under consideration are introduced by using (2.1), then we obtain that W,I w,zzO and wg 
satisfies the equation 

(5.1) 

The perturbed domain in the initial-boundary value problem obtained for a plane wave is 
separated from rest by a wave front surface that goes from the point 0 to the point .I+ in 
the time 7, (XJ. As we know, the function ~(5~) satisfies the eikonal equation /l%/ from 
which we find 

(5.2) 

Following the ray method /l%/, we seek the solution of (5.1) in the form 

The sum starts with n = 1. since we consider the function w8 to be continuous, while 
its first derivatives may undergo discontinuity at the front. 

We note that it follows from relationship (5.3) that 

Hence, taking into account (5.2) for the force of body interaction with the medium to 
obtain 

Let k be the number of the first derivative of the function Y that does not vanish at 
t=o. Then the term z'c+* (0) on the right-hand side of (5.4) is of order P-1 while the 
term H(t) is of the order tk. We hence conclude that the first of these terms is of an 
order greater than the second for small t. 

Thus, the expression for the interaction force is naturally identical with the expression 
for this same force in a homogeneous medium with density P (0) 
terms of lower order of smallness in t. 

and modulus E(0) apart from 

We will show how to evaluate the correction terms 0, (0) P/n!. To do this we substitute 
the series (5.3) into (5.1) and equate coefficients for (t -T)~ to zero. Taking into account 
that the function z satisfies the eikonal equation, 
functions @, 

we obtain a system of equations in the 

CD,' + CD, (E’/E + p’ip) / 4 = 0 

@,+I + @a+, (E’IE + p'/p) / 4, = @x”ElC? (pEPI + Qt,,‘E’ 

CD= (0) = Y(n) (0) 

(5.5) 
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The last equality results from the condition w3 (0, t) = I'(t) and the relationship (5.3). 
In the problem under consideration Y(0) =- Y'(0) = 0. Let YW (0) # 0, Yrk-1) (0) = . rz 

1” (0) = 0. Then we obtain from system (5.5) 

Hence, it follows that the first correction term in the expression for the interaction 
force has the form 

@& (0) P/k! = -Y(k) (0) t" (E'IE + p'/p)/ (4k!) 

Differentiating the equation for mD, successively, we calculate the values of all the 
derivatives of the function I&. at the point 0. 
next expression, we find @k+1 (0). 

Substituting the derivatives found into the 
Successively repeating the procedure described, we find 

all @,' (0). 

Remark. Different methods of investigating plane-wave propagation in inhomogeneous 
elastic and viscoelastic media are discussed in a number of publications t/17-20/, for 
example). It follows from the theorem proved above that these methods are applicable for 
investigating integral characteristics of the solutions of spatial problems about the dynamical 
impression of solid bodies into media, inhomogeneous in depth, with linear governing relation- 
ships. 

6. Impression with body rotation. The cases of vertical im- 
pression of a blunt body in different continuous media were 
examined above. Following /4/, we extend all the results 
presented above about the integral characteristics of solutions 
to the case when the body impression in the half-space occurs 
with rotation (Fig.2). 

Let c be the centre of body mass and let the body angular 
velocity o and the velocity vector of the centre of mass vc be 
known. 

Fig.2 

As in the case of vertical impression, the integral of 
vertical displacements of points of the boundary plane Y (t) 
at the superseismic stage of the impression process will equal 
the volume of the part of the body being inserted. For im- 
pression with rotation the velocities of points of the domain 
G (t) will differ, and the change in volume Y(t) during the 
time interval At will be determined from the formula 

AY (1) = I\ u~(z,,+~, t) Atds,dz, 
C&b 

(6.1) 

We introduce the coordinate system Olxl’~~r,‘x,’ (Fig.2) which is obtained by parallel 
transfer of the system O~lxzx, in the I~ = 0 plane to the point O,, where Or is the 
projection of the point C on the boundary plane. Then we obtain according to Euler's theorem 

u, (II', S?', 0, t) = Da (0, 0, 0, t) + 01z2' - w& (6.2) 

and it follows from (6.1) and (6.2) that 

y' (t) == U,'S + otsl* - OJ," 

where S,* is the static moment of the domain G (t) about the xt' axis., 
Therefore, as for vertical impression and for impression with rotation, finding the 

integral characteristics of the solutions is equivalent to the problem of plane wave 
propagation in the linear medium under consideration. 

1. 

2. 

3. 

The author is grateful to A.G. Khovanskii for discussing this paper. 
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